
Voss 1

Applying Fast/Slow Asynchrony and Boolean Minimalism to
the Computational Modeling of C. elegans Signaling Pathways

Chelsea S. Voss
November 13, 2010

Introduction.
The soil-dwelling nematode Caenorhabditis elegans is a model organism frequently

studied as an example of animal development. The worm is transparent, easily grows in petri

dishes, and has exactly 959 somatic cells in its adult form, making it a useful organism for

developmental studies.[2] During C. elegans' late development, six precursor cells develop into

the cells of the C. elegans vulva upon activation of intracellular and intercellular signaling

pathways triggered by a signal from an anchor cell within the nematode gonad. Mutations in any

of the genes involved in these signaling pathways can produce altered phenotypes which, along

with the genetic mechanisms involved in these six cells' development, have been well

researched.[1][2][8][9][10]

In the wild-type nematode, the anchor cell produces an inductive signal, causing the

precursor cell nearest to the anchor cell to adopt a cell fate denoted as 1o. This 1o precursor cell

produces a lateral signal, causing its neighbor precursor cells to adopt a cell fate denoted as 2o.

The remaining three precursor cells, receiving neither signal, adopt the 3o cell fate (figure 1).

The different cell fates yield different patterns of cell division for the lineage of cells descended

from each precursor cell: the 1o fate produces a lineage of four cells with the last round of

division along the transverse axis; the 2o fate produces a lineage of four cells with the last round

of division partially along the transverse and partially along the longitudinal axes; and the 3o fate

produces a lineage of two cells within the hypoderm of the nematode.[9] The precise placement of

each of these cell fates determines whether the C. elegans vulva develops correctly. Mutations in

the genes relevant to this development process produce altered patterns of cell fates, resulting in

Voss 2

Figure 1. Basic signaling mechanisms involved in development of the wild-type nematode. The
anchor cell within the nematode gonad produces an inductive signal, which varies in strength
along a gradient depending on a precursor cell's distance from it. The inductive signal causes
the center-most cell to receive the 1o cell fate, and to generate a lateral signal. The surrounding
cells receive this signal, which overrides the inductive signal and produces the 2o cell fate.[6][8]

novel phenotypes.

The tools of systems biology can be used to understand the properties of such a signaling

system. Computational models, describing the states and interactions of the components of a

system such as the one involved in producing the fate patterns of the C. elegans vulva, allow

predictions of model interactions to be made in silico when constraints prevent such interactions

from being observed in vivo. As biological knowledge moves forward, computational models

that allow such vast quantities of information to be simplified and understood grow more

significant.

Of particular importance is the development of models that store a minimal amount of

information while still accurately describing the system to be modeled, so that models of

complicated systems may be analyzed within a reasonable capacity of computing power.

Wherever possible, boolean models, in which the system's components may be either on or off

and reactions between components either activate or inhibit, are thus preferable to non-boolean

models, which describe a system's components and reactions with varying numerical degrees of

Voss 3

Figure 2: Comparison of Kripke structures (diagrams of a model's possible outcomes) for
asynchrony versus synchrony. a) Kripke structure of a synchronously-updating model. The
process is deterministic; it can only lead to one possible outcome, and so the Kripke structure is
a straight line. b) Kripke structure of the same model, but with asynchronous updating. Only one
reaction is allowed to occur, of the many possible at each step, leading non-deterministically to a
branched Kripke structure and multiple possible outcomes. This work will utilize asynchrony.

strength or speed. Constructing such models is also more reasonable in the absence of concrete

quantitative data about the reaction kinetics of all the system's components.[7]

The model constructed in this project makes fewer unnecessary assumptions about timing

than other boolean models of C. elegans development, improving its simplicity and realism.

During the execution of a boolean model, the status of each component in the system is usually

updated according to a “synchronous update rule,” in which all reactions that have the capacity

to occur are updated simultaneously, or according to an “asynchronous update rule,” in which

one reaction among all possible reactions is chosen arbitrarily to happen[7] (figure 2).

Synchronous updating results in deterministic outcomes for model executions, producing

consistent and easily-analyzed results, though such outcomes may often be unrealistic for

Voss 4

biological systems. Asynchronous updating is useful for modeling systems where little is known

about the rates of reactions, or where reaction rates may vary due to stochastic effects, as is often

the case with biological systems.[7] Partially asynchronous models are also possible: a previous

model of C. elegans vulval development[6] utilized the concept of “bounded asynchrony,” in

which processes are allowed to update independently up to a certain extent, such that no one

process significantly outpaces the others.[5] This project's model uses a variation on asynchronous

updating, in which reactions are defined as “fast” or “slow.” Processes proceed at completely

independent rates, in a non-deterministic manner, except that no “slow” reactions may occur

until all available “fast” reactions have been allowed to update, proceeding to completion.

Describing reactions as “fast” or “slow” allows the rates of processes to freely vary as they do in

most biological systems.

The purpose of this project was to determine whether a minimalistic model, utilizing

boolean variables and reactions and adding the concept of fast and slow reactions to the

asynchronous update rule, could accurately describe the intricate interactions producing the C.

elegans vulval development pattern, and to further determine whether such a model could be

capable of predicting the novel phenotypes resulting from various combinations of mutations in

the nematode genome. Extending the results of previous computational studies[6] of C. elegans

vulval development, this work will determine the viability of a boolean and partially-

asynchronous model and will generate new predictions about the mechanisms behind this aspect

of development.

Methods and Results.
This computational modeling project began with describing the structure of the wild-type

signaling pathways, incorporating sufficient information to describe the state of every signaling

component and every reaction between components. Conceptually the model contains 'nodes,'

Voss 5

Figure 3. Nodes and reactions of the wild-type computational model within a single vulval
precursor cell. Pointed arrows denote activation, flat arrows denote inhibition.

variables possessing a value of 1 or 0 and representing molecules, signals and cells, as well as

'reactions,' which represent a node activating or inhibiting another node. Twelve nodes are

included per cell to describe the signaling processes relevant to each cell's fate determination

(figure 3). The arrangement of these nodes and reactions was outlined to reflect known data[2][6][9]

about their molecules' interactions. The inductive signal, node IS, activates node let23, an

epidermal growth factor receptor, which activates a signal transduction pathway that leads to the

1o cell fate and the production of the lateral signal, LS, which may be received by neighboring

cells. Reception of a neighboring cell's LS by another receptor, lin12, activates inhibitor

molecules encoded by 'lst', the lateral signal targets, which inhibit the action of the 1o pathway,

and activates a second mechanism which leads to the 2o cell fate. For the purpose of observing

Voss 6

Figure 4. Other nodes and reactions of the entire wild-type model, across all six precursor cells.
Six times as many precursor cell nodes and reactions, from figure 3, are required to form the full
model. The two gray arrows denote slow reactions; all others are fast.

each cell's computed fate, three nodes are included in this model to represent the three individual

cell fates. The interactions between these nodes are designed to ensure that each of the six

precursor cells' fates are properly predicted, depending upon the nodes activated within the cell.

The default cell fate is 3o, which may be inhibited by the activation of either cell fate 1o or cell

fate 2o. Cell fate 1o doubly inhibits 2o, so that the cell fate received first will remain activated;

cell fate 2o indirectly inhibits 1o in return, through the action of the lst inhibitors.

Four other nodes, related to the other signals produced by the anchor cell and the

hypodermal syncytium, are also included in this model (figure 4). The hypodermal syncytium,

node hyp7, secretes an epidermal growth factor (identical to the inductive signal produced by the

anchor cell), encoded by lin-3, which activates all six precursor cells unless inhibited by lin-15,

the product of the synthetic multivulva genes.[6] The anchor cell, node AC, only produces an

inductive signal for the third, fourth, and fifth cells. Biologically, the fourth precursor cell is

nearest in proximity to the anchor cell; therefore the inductive signal acts along a gradient,

reaching the central cell first, the third and fifth cells with a significant time delay, and the

remaining three cells not at all.

Voss 7

This gradient is modeled by applying the fast-slow asynchrony concept, defining

reactions as either “fast” or “slow.” The activation of IS at the fourth cell is an interaction

represented as “fast,” whereas the signal's later arrival at the third and fifth cells is indicated as a

“slow” process. The activations of IS at these two cells are the only “slow” reactions within the

entire model; all other reactions are by default “fast,” meaning they have equal probability of

selection by the asynchronous update rule and take precedence over the two “slow” reactions,

which are these two inductive signals. “Slow” reactions will only proceed after all possible “fast”

reactions have been allowed to occur. This serves to simulate the slowness with which the

inductive signal arrives at these cells compared to its immediate effects upon the fourth cell,

while maintaining a mostly asynchronous model.

Possible values for nodes are 0 and 1: 0 denoting “off” or “false” and 1 denoting “on” or

“true.” All nodes start with a value of 0 except for AC, hyp7, lin15, and cell-fate-3o in each cell,

which have the value 1 at the beginning of the model's execution. Thus at the beginning of the

model's execution, the anchor cell is present, the production of a second inductive signal by the

hypodermal syncytium is blocked by lin15, and cell-fate-3o is true by default until further signals

arrive. Reactions, both “inhibition” and “activation,” may increase or decrease the value of a

node to 1 or 0 depending upon the states of the nodes acting upon it. The sum of the values of

activating reactions, minus the sum of the values of inhibiting reactions, is used to calculate

whether a node can update its value: where xa is the value (1 or 0) of any activating node and xi is

the value (1 or 0) of any inhibiting node, a node decreases in value if ∑xa – ∑xi is negative, and

increases in value if ∑xa – ∑xi is positive. Note that if the value of a node is 0, it cannot have any

activating influence upon other nodes; likewise with inhibition.

The model was analyzed using NuSMV, a symbolic model checker capable of analyzing

Voss 8

systems for certain properties.[3] With a description of the system's structure and a CTL

specification formula describing the logic of what to check for, NuSMV searches through the

entire set of possible states of the system and outputs whether or not it has the characteristics

outlined in the CTL property. In this case, NuSMV was used to check that the cell fate pattern for

the six vulval precursor cells had the pattern 3o-3o-2o-1o-2o-3o.

Since the complete wild-type model contains 76 nodes and 123 reactions, it was first

described in a more manageable text file format before being converted into the format of

NuSMV. For each node, data detailed in the file included the node's name, its initial value (0 or

1), and its speed (fast or slow); each reaction included the name of the node causing the reaction,

the name of the node being reacted upon, and whether the interaction was activation or

inhibition. A program of 172 lines was written in Java for the purpose of generating SMV files

based on these simpler text descriptions.

The first few lines of the wild-type model are included [appendix 1], in its text format

prior to conversion to SMV. The first line of the file is a CTL formula, defining the logical

statement which NuSMV will check to determine its truth for the Kripke structure of all possible

model states.[3][4] Since the model is non-deterministic, a consequence of utilizing the

asynchronous update rule, the Kripke structure has a branched and possibly infinite topology

(figure 2). The CTL formula in the top line of this file is written such that it will be true if and

only if the Kripke structure has the property that for all possible pathways the model can take,

the precursor cells eventually assume the wild-type fate pattern 3o-3o-2o-1o-2o-3o.

As a sample of the outputs produced by the Java program, the SMV file corresponding to

the wild-type model is included [appendix 2]. The language of the SMV file describes all aspects

of the model: it outlines the possible values of each node, sums the activations and inhibitions

Voss 9

influencing the value of each node, defines which nodes may update under which conditions (to

ensure the definition of “fast” and “slow” is met), and sets the rules by which nodes' value

increases or decreases. In addition to the nodes of the model, a variable called 'run' was included

to create asynchronous updating: a node will only update if 'run' points to it, and 'run' may point

to any one in the set of all the model's reactions that is capable of occurring at that moment,

allowing processes to occur non-deterministically as the next node to update is selected

arbitrarily. This tactic for modeling asynchronous updating had been used in asynchronous

models of other processes.[7]

Execution of the wild-type model with the appropriate CTL formula confirmed that the

model produced the expected 3o-3o-2o-1o-2o-3o pattern of cell fates. The next step was to test the

boolean model for a variety of mutations, and confirm that the model predicted similar results to

those observed in vivo. Six different mutations were simulated, with a total of 48 possible

mutation combinations. These mutations were removal of the anchor cell (node AC), deletion of

the inductive signal receptor (node let23), deletion or constitutive activation of the lateral signal

receptor (node lin12), deletion of the lateral signal targets (node lst), and deletion of the synthetic

multivulva genes (node lin15). A second Java program, with 117 lines, was written to make the

requisite changes to the wild-type model's topology in order to generate the text file model

descriptions describing each possible combination of mutations, which were then converted to

SMV files using the first Java program. Deletions were accomplished by removing all activating

reactions to the deleted node, and by setting the node's initial value to 0; constitutive activation

of lin12 was accomplished by setting its initial value to 1. The resulting text-files were then

entered into the first Java program to generate a SMV description of each mutated model.

The result for each mutation was determined first by testing with a CTL formula

Voss 10

Mutations (AC+) Predicted
(in silico)

Actual
(in vivo)

Mutations (AC–) Predicted
(in silico)

Actual
(in vivo)

lin12 lin15 let23 lst lin12 lin15 let23 lst

+ + + + 3 3 2 1 2 3 3 3 2 1 2 3 + + + + 3 3 3 3 3 3 3 3 3 3 3 3
+ – + + ½ ½ ½ ½ ½ ½ ½ ½ 2 1 2 ½ + – + + ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½
+ – + – 1 1 1 1 1 1 1 1 1 1 1 1 + – + – 1 1 1 1 1 1
+ – – + 3 3 3 3 3 3 3 3 3 3 3 3 + – – + 3 3 3 3 3 3
+ – – – 3 3 3 3 3 3 + – – – 3 3 3 3 3 3
+ + + – 3 2 1 1 2 3 3 3 1 1 1 3 + + + – 3 3 3 3 3 3 3 3 3 3 3 3
+ + – + 3 3 3 3 3 3 3 3 3 3 3 3 + + – + 3 3 3 3 3 3
+ + – – 3 3 3 3 3 3 + + – – 3 3 3 3 3 3
– + + + 3 3 1 1 1 3 3 3 1 1 1 3 – + + + 3 3 3 3 3 3 3 3 3 3 3 3
– – + + 1 1 1 1 1 1 1 1 1 1 1 1 – – + + 1 1 1 1 1 1 1 1 1 1 1 1
– – + – 1 1 1 1 1 1 – – + – 1 1 1 1 1 1 1 1 1 1 1 1
– – – + 3 3 3 3 3 3 – – – + 3 3 3 3 3 3 3 3 3 3 3 3
– – – – 3 3 3 3 3 3 – – – – 3 3 3 3 3 3 3 3 3 3 3 3
– + + – 3 3 1 1 1 3 3 3 1 1 1 3 – + + – 3 3 3 3 3 3
– + – + 3 3 3 3 3 3 3 3 3 3 3 3 – + – + 3 3 3 3 3 3
– + – – 3 3 3 3 3 3 – + – – 3 3 3 3 3 3
d + + + 2 2 2 ½ 2 2 2 2 2 1 2 2 d + + + 2 2 2 2 2 2 2 2 2 2 2 2
d – + + ½ ½ ½ ½ ½ ½ ½ ½ 2 1 2 ½ d – + + ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½
d – + – 1 1 1 1 1 1 d – + – 1 1 1 1 1 1
d – – + 2 2 2 2 2 2 d – – + 2 2 2 2 2 2
d – – – 2 2 2 2 2 2 d – – – 2 2 2 2 2 2
d + + – 2 2 1 1 1 2 d + + – 2 2 2 2 2 2 2 2 2 2 2 2
d + – + 2 2 2 2 2 2 2 2 2 2 2 2 d + – + 2 2 2 2 2 2 2 2 2 2 2 2
d + – – 2 2 2 2 2 2 d + – – 2 2 2 2 2 2
Figure 5: Results of the test of each combination of mutations. “½” indicates that “1 or 2” are
both possible cell fates. “d” indicates a component is constitutively activated. The cases shaded
in gray indicate predicted outcomes which disagreed with published observations.

describing the predicted outcomes, based on existing studies of C. elegans vulval development.

The output of NuSMV is 'true' or 'false' with a counterexample, based on the truth or falsity of

the CTL formula. Each combination of mutation was tested to find the final pattern of cell fates

that matched it, such that the CTL formula output from NuSMV was 'true.' In certain cases, cells

Voss 11

could take either a 1 or 2 fate, which was an allowable possibility with this non-deterministic,

asynchronous model. The model's predictions are summarized in figure 5, and compared with

the in vivo observations documented in the literature.[1][8][9][10] Except for the four cases

highlighted in gray, these results consistently matched up with the in vivo results observed in the

literature, as well as the predictions of an earlier model constructed with separate methods.[6]

Of the four discrepancies, three are in cases where precursor cells may non-

deterministically receive either fate 1o or fate 2o; these are highlighted in light gray. For each of

these, the computational model predicts more flexible phenotypes than have been observed in

actual mutant nematodes. A previous model of C. elegans development based on “bounded

asynchrony” correctly predicted these mutations' in vivo phenotypes,[6] differing from the results

of this project. This difference may be due to the nature of the fast-slow asynchronous update

rule, which considers all possible sequences of reaction times, even those that may occur rarely;

the other concept of “bounded asynchrony” disallows improbable reaction timings. In vivo, only

the cell fate patterns ½½212½, 222122, and ½½212½ have thus far been observed as potential

phenotypes for each of these mutation combinations[9] (the mutations are deleted-lin15,

constitutively-activated-lin12, and both of these, respectively). According to this project's fast-

slow asynchronous model, the predicted cell fate patterns ½½½½½½, 222½22, and ½½½½½½

may be possible (if improbable) outcomes. For example, while 222122 may be the only

phenotype observed in vivo for constitutive activation of lin12, the computational model predicts

that rare circumstances may produce a mutant worm with the fate pattern 222222. Random

chance may have prevented these possibilities from being observed in vivo, as most of the time

these mutations' development would follow the more probable path.

The other discrepancy in the model's predictions occurs for a deletion in lst, the lateral

Voss 12

Figure 6. a) Original structure of model for reception of lateral signal. b) Modification made to
structure of model in order correct discrepancy after testing the outcome for a deletion in lst.
These results predict a different tactic for modeling the pathway by which the lateral signal
produces the 2o cell fate.

signal target pathway. The expected outcome based on experiments done in vivo is 331113;[1][10]

the cell fate pattern predicted by this model's results is 321112. Analyzing the computational

model suggested this discrepancy could be due to an error whereby the model's structure did not

properly reflect the molecular interactions within a live nematode. In the original model, the

lateral signal activates both lst and a separate, independent pathway leading to the 2o cell fate; as

a consequence, when a mutant possesses a deletion in lst, the 2o pathway is left intact, so two

cells may still assume the 2o fate, yielding the 321112 pattern predicted by the computational

model. However, in an actual nematode possessing this mutation, the precursor cell fate pattern

is 331113:[9][10] the two neighboring cells were unable to assume the 2o cell fate. This discrepancy

between in silico and in vivo results suggests that the lst inhibitor proteins and the 2o pathway

were not independent, but that they were linked in some way: specifically, since a deletion in lst

prevented the 2o cell fate, the 2o pathway could be more accurately modeled as activated

indirectly by lst rather than directly by the lateral signal receptor lin12. The updated version of

this model, based on this inference, is shown in figure 6. When NuSMV was executed once

more using this updated model description, the resulting prediction exactly matched the 331113

cell fate pattern observed in vivo in mutated nematodes.

Voss 13

Discussion.
This work successfully demonstrated that even a minimalistic boolean model with

partially asynchronous timing could accurately predict the cellular signaling interactions

governing C. elegans vulval development, in both wild-type and mutant nematodes. The results

of the wild-type model, yielding the expected 3o-3o-2o-1o-2o-3o cell fate pattern outcome,

confirmed that a system representing molecular values as boolean and lacking detailed timing

information but for a notion of “fast” or “slow” was capable of depicting the signaling pathways

involved in this process.

Results from testing various combinations of mutations in the genes controlling C.

elegans vulval development further demonstrated the boolean, asynchronous model's viability,

while suggesting other hypotheses about these cellular signaling pathways. Subsequent execution

of all 48 possible combinations of mutations in the model using NuSMV accurately predicted the

mutant phenotypes of 44 combinations. Analysis of a discrepancy in the mutation where lst is

deleted suggested a modification to the original model's concept and structure, showing a

different pathway for the action of the lateral signal and removing the discrepancy. In addition to

amending current knowledge about the mechanisms of this signaling pathway, correction of this

detail of the computational model's structure improved its accuracy to 45 out of 48. The

remaining three discrepancies between the model's predictions and published observations

suggested a greater degree of flexibility in these three mutations' phenotypes. The predicted

phenotypes may not have yet been observed in studies of mutant worms, as a result of the rarity

of the random timing variations that would lead to these unobserved fate patterns. Possible future

work would involve taking this model's hypotheses and testing them with in vivo observations of

mutant nematode worms, to see if the occurrence of these improbable phenotypes can be

verified.

Voss 14

The computational model of C. elegans vulval development created in this project

successfully modeled the complex cellular signaling mechanisms behind vulval precursor cell

fate determination patterns, while maintaining partial asynchrony (except for two “slow”

reactions) and boolean simplicity. Simplifying these signaling pathways to a handful of true-or-

false values and minimally-synchronized reactions allowed an accurate model to be made,

despite containing sparse information about the strengths of signals or the rates of reactions. The

merits of creating such a model apply to both its construction and analysis. During biological

research, computational models can be made when only a few details have been studied

beforehand about in vivo reaction rates when it is assumed that they may behave sporadically or

at random, as in an asynchronous model, or about the effects of varying concentrations of signal

molecules when they are assumed to act on an all-or-nothing basis. During computational

analysis of the model itself, while the branching Kripke structure of an asynchronous model's

possible values may be time-consuming to interpret, the simplicity of nodes' values assists

computation, since calculating whether or not reactions occur is made that much more simple.

Where accuracy can be maintained, this simplicity is an important feature of

computational models. Computational biology is expanding to more and more complex systems

as biological knowledge grows; thus, it is important that methods be developed for modeling vast

and intricate systems, using the absolute minimum in complexity and data requirement for the

system to still be modeled accurately. Boolean models require only a single bit to store the state

of each molecule included in the model, allowing more complex biological systems to be

modeled. The simplicity provided by a boolean model system expedites the process of analyzing

the model's outcomes, a factor which becomes more important as the systems to be modeled

increases in complexity.

Voss 15

Asynchronously updating models, as opposed to synchronous models or models with

detailed description and simulation of each reaction's speed, thoroughly account for the

randomness inherent in biological systems while requiring little knowledge about specific

reaction times. While the non-determinism of an asynchronous model, due to the many possible

model states that could be selected to occur at any stage, may be more of a challenge to interpret

computationally, asynchrony allows broader flexibility in a model's outcomes than would

synchrony, as demonstrated in this project's results. Appending the asynchronous update rule by

defining reactions as “fast” or “slow” adds more realism to the model, while retaining the

simplicity of that which must be known to develop the model's timing system. This work

demonstrates the viability of using both boolean variables and fast-slow asynchrony as methods

for constructing computational models, which can contribute to simpler and more realistic

modeling of biological systems in the future.

Developing simplified models of complex biological systems will ultimately allow more

knowledge to be discovered about these systems. Perhaps someday entire organisms may be

modeled by computer, allowing the mechanisms of their development and physiology to be

observed. Indeed, when the exact lineage and developmental ancestry of every one of C. elegans'

959 cells has been traced out, such a possibility might not be too far off. As biological studies

increase understanding of life's processes, especially those of model organisms such as

Drosophila melanogaster, Arabidopsis thaliana, and Caenorhabditis elegans, there is a growing

repository of detailed information that could be used to model the genetics, development, and

behavior of full organisms. Accurate biological data and efficient computational methods would

both be critical to the construction of such ambitious models.

For C. elegans, a model organism of animal development, modeling work also yields

Voss 16

results that can be extended to the study of other organisms' development. Uncovering the details

of its development leads directly to further understanding of the mechanisms underlying the

development of all animals, including humans. Though an invertebrate, the nematode shares

many molecular features with vertebrates: insulin as a signaling molecule, homeobox-containing

homeotic genes, and programmed cell death,[2] to name a few. Even the epidermal growth factor

family of proteins and their receptors, including the EGF molecule produced as an inductive

signal from the anchor cell in the very signaling pathway explored by this project, are conserved

evolutionarily in both nematodes and humans. Advances in the study of C. elegans development

are therefore broadly applicable to the study of the development of humans and other animals.

Improved computational modeling techniques, such as those tested in this project, have the

capacity to facilitate such studies, ultimately leading to more complete knowledge of the

molecular biology of human development.

Voss 17

References.
[1]. Berset T., Hoier E.F., Battu G., Canevascini S., Hajnal A. (2001). Notch Inhibition of RAS

Signaling Through MAP Kinase Phosphatase LIP-1 During C. elegans Vulval
Development. Science 291, 1055-1058. DOI: 10.1126/science.1055642

[2]. Campbell N.A., Reece J.B. (2004). “Biology,” 7th edition. Benjamin Cummings Publishing:
San Francisco. pp. 412-427.

[3]. Cavada R., Cimatti A., Jochim C.A., Keighren G., Olivetti E., Pistore M., Roveri M.,
Tchaltsev A. (2010). “NuSMV 2.5 User Manual.” Fondazione Bruno Kessler. Web.
Accessed 12 Nov. 2010. <http://nusmv.fbk.eu/>.

[4]. Clarke E.M., Emerson E.A., Sistla A.P. (1986). Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, vol. 8 no. 2, 244-263.

[5]. Fisher J., Henzinger T.A., Mateescu M., Piterman N. (2008). Bounded Asynchrony:
Concurrency for Modeling Cell-Cell Interactions. LNBI 5054, 17-32.

[6]. Fisher J., Piterman N., Hajnal A., Henzinger T.A. (2007). Predictive Modeling of Signaling
Crosstalk during C. elegans Vulval Development. PLoS Comput Biol 3(5): e92.
doi:10.1371/journal.pcbi.0030092.

[7]. Mangla K., Dill D.L., Horowitz M.A. (2010). Timing Robustness in the Budding and Fission
Yeast Cell Cycles. PLoS ONE 5(2): e8906. doi:10.1371/journal.pone.0008906

[8]. Sharma-Kishore R., White J.G., Southgate E., Podbilewicz B. (1999). Formation of the
vulva in Caenorhabditis elegans: a paradigm for organogenesis. Development 126, 691-
699.

[9]. Sternberg P.W., Horvitz H.R. (1989). The Combined Action of Two Intercellular Pathways
Specifies Three Cell Fates during Vulva1 Induction in C. elegans. Cell 58, 679-693.

[10]. Yoo A.S., Bais C., Greenwald I. (2004). Crosstalk Between the EGFR and LIN-12/Notch
Pathways in C. elegans Vulval Development. Science 303, 663-665. DOI:
10.1126/science.1091639

Voss 18

Appendix 1. First few lines of the wild-type model, in its text format before conversion to SMV.
The full version was too long to include here, at 228 lines. The CTL formula in the very first line
is typical of the logical specifications used to test the mutated model structures later on.

AF((cellfate3_a = 1) & (cellfate2_a = 0) & (cellfate1_a = 0) & (cellfate3_b =
1) & (cellfate2_b = 0) & (cellfate1_b = 0) & (cellfate2_c = 1) & (cellfate1_c
= 0) & (cellfate3_c = 0) & (cellfate1_d = 1) & (cellfate2_d = 0) &
(cellfate3_d = 0) & (cellfate2_e = 1) & (cellfate1_e = 0) & (cellfate3_e = 0)
& (cellfate3_f = 1) & (cellfate2_f = 0) & (cellfate1_f = 0))
76
AC 1 f
hyp7 1 f
lin3 0 f
lin15 1 f
IS_a 0 f
LET23_a 0 f
SEM5_a 0 f
LET60_a 0 f
MPK1_a 0 f
lst_a 0 f
LS_a 0 f
cellfate1_a 0 f
cellfate2_a 0 f
cellfate3_a 1 f
lin12_a 0 f
pathway2_a 0 f
IS_b 0 f
LET23_b 0 f
SEM5_b 0 f
LET60_b 0 f
MPK1_b 0 f
lst_b 0 f
LS_b 0 f
cellfate1_b 0 f
cellfate2_b 0 f
cellfate3_b 1 f
lin12_b 0 f
pathway2_b 0 f
IS_c 0 s
LET23_c 0 f
SEM5_c 0 f
LET60_c 0 f
MPK1_c 0 f
lst_c 0 f
LS_c 0 f
cellfate1_c 0 f
cellfate2_c 0 f
cellfate3_c 1 f
lin12_c 0 f
pathway2_c 0 f
IS_d 0
LET23_d 0 f
SEM5_d 0 f
LET60_d 0 f
MPK1_d 0 f
lst_d 0 f

Voss 19

Appendix 2. Abridged wild-type model written for NuSMV execution. The full version was too
long to include here, numbering 825 lines. Excised portions are indicated with italicized notes.

MODULE main
VAR
run : {run_choice, run_AC, run_hyp7, run_lin3, run_lin15, run_IS_a,
run_LET23_a, [...all possible nodes...] run_lin12_f, run_pathway2_f};
AC: {0,1};
hyp7: {0,1};
lin3: {0,1};
lin15: {0,1};
IS_a: {0,1};
[...all nodes, possible values 0 or 1...]
cellfate3_f: {0,1};
lin12_f: {0,1};
pathway2_f: {0,1};
DEFINE
AC_inc := 0;
hyp7_inc := 0;
lin3_inc := 0 + hyp7 - lin15;
lin15_inc := 0;
IS_a_inc := 0;
LET23_a_inc := 0 + IS_a + lin3 – lst_a;
[...formulas for all nodes' activators and inhibitors...]
cellfate3_f_inc := 0 - cellfate2_f - cellfate1_f;
lin12_f_inc := 0 + LS_e;
pathway2_f_inc := 0 + lin12_f;
ASSIGN
init(run) := run_choice;
next(run) := case

(((AC_inc > 0) & (AC = 0)) | ((hyp7_inc > 0) & (hyp7 = 0)) |
((lin3_inc > 0) & (lin3 = 0)) | ((lin15_inc > 0) & (lin15 = 0)) |
((IS_a_inc > 0) & (IS_a = 0)) | [...includes all 'fast' nodes, excludes
IS_c and IS_e...] | ((lin12_f_inc > 0) & (lin12_f = 0)) | ((pathway2_f_inc
> 0) & (pathway2_f = 0)) | (0=1)) :{run_AC, run_hyp7, run_lin3, [...set of
all 'fast' nodes...] run_lin12_f, run_pathway2_f};

1 :{run_AC, run_hyp7, run_lin3, run_lin15, run_IS_a, run_LET23_a,
[...set of all nodes, including two 'slow'...] run_cellfate3_f, run_lin12_f,
run_pathway2_f};
 esac;
init(AC) := 1;
next(AC) := case

(run = run_AC) & ((AC_inc > 0) & (AC = 0)) : 1;
(run = run_AC) & ((AC_inc < 0) & (AC = 1)) : 0;
1 :AC;

 esac;
[...similar statements for all nodes...]
init(pathway2_f) := 0;
next(pathway2_f) := case

(run = run_pathway2_f) & ((pathway2_f_inc > 0) & (pathway2_f = 0)) : 1;
(run = run_pathway2_f) & ((pathway2_f_inc < 0) & (pathway2_f = 1)) : 0;
1 :pathway2_f;

 esac;
FAIRNESS run = run_AC;
[...similar 'fairness' statements for all nodes...]
FAIRNESS run = run_pathway2_f;

