
A	Tool	for	Automated	
Inference	of	Executable	Rule-

Based	Biological	Models

Chelsea	Voss,	Jean	Yang,	Walter	Fontana
Static	Analysis	in	Systems	Biology,	2017













The	need	for	biological	models

executable	models	for
“in	silico” experimentation



programming	is	hard



The	need	for	computer-generatedmodels

NLP



Some	NLP	output	requires	logical	inference



Some	NLP	output	requires	logical	inference

Executable	model	needs:
Mechanistic	rules



Some	NLP	output	requires	logical	inference

Executable	model	needs:
Mechanistic	rules

NLP	produces:
Mechanistic	rules

§

Non-mechanistic	rules

§

§

Domain	knowledge

§

§

§



Some	NLP	output	requires	logical	inference

Executable	model	needs:
Mechanistic	rules

NLP	produces:
Mechanistic	rules

§

Non-mechanistic	rules

§

§

Domain	knowledge

§

§

§

???



Some	NLP	output	requires	logical	inference

Executable	model	needs:
Mechanistic	rules

NLP	produces:
Mechanistic	rules

§ MEK	phosphorylates	ERK1

Non-mechanistic	rules

§

§

Domain	knowledge

§

§

§

???



Some	NLP	output	requires	logical	inference

Executable	model	needs:
Mechanistic	rules

NLP	produces:
Mechanistic	rules

§ MEK	phosphorylates	ERK1

Non-mechanistic	rules

§ MEK	phosphorylates	the	ERK	protein	
family

§ Active	ERK	phosphorylates	RSK

Domain	knowledge

§

§

§

???



Some	NLP	output	requires	logical	inference

Executable	model	needs:
Mechanistic	rules

NLP	produces:
Mechanistic	rules

§ MEK	phosphorylates	ERK1

Non-mechanistic	rules

§ MEK	phosphorylates	the	ERK	protein	
family

§ Active	ERK	phosphorylates	RSK

Domain	knowledge

§ When	ERK1	is	phosphorylated,	it	is	
active

§ S151D-mutated	ERK1	behaves	as	if	
always	phosphorylated

§ ERK1	and	ERK2	are	in	the	ERK	protein	
family

???



Some	NLP	output	requires	logical	inference

Executable	model	needs:
Mechanistic	rules
• MEK	phosphorylates	ERK1
• MEK	phosphorylates	ERK2
• Phosphorylated	ERK1	
phosphorylates	RSK
• Phosphorylated	ERK2	
phosphorylates	RSK
• S151D-mutated	ERK1	
phosphorylates	RSK

NLP	produces:
Mechanistic	rules

§ MEK	phosphorylates	ERK1

Non-mechanistic	rules

§ MEK	phosphorylates	the	ERK	protein	
family

§ Active	ERK	phosphorylates	RSK

Domain	knowledge

§ When	ERK1	is	phosphorylated,	it	is	
active

§ S151D-mutated	ERK1	behaves	as	if	
always	phosphorylated

§ ERK1	and	ERK2	are	in	the	ERK	protein	
family

???



Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge



Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Models



Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models



Our	contribution

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models



Our	contribution:	how	it	works

1:	Predicates	
over	models

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models



Our	contribution:	how	it	works

1:	Predicates	
over	models

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models

2:	Implement	
interpretation



Our	contribution:	how	it	works

1:	Predicates	
over	models

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models

2:	Implement	
interpretation

3:	Create	
predicates



1:	Predicates	
over	models

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models

2:	Implement	
interpretation

3:	Create	
predicates



1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language.



1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language: Kappa.



1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language:	Kappa.



1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language:	Kappa.

Why	Kappa?



1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language:	Kappa.

[Figure	due	to	Danos et	al.	2009:	Abstracting	the	ODE	Semantics
of	Rule-Based	Models:	Exact	and	Automatic	Model	Reduction.]

Why	Kappa?

Well-defined	operational	semantics
allow	us	to	reason	precisely.



1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language:	Kappa.
Second,	devise	a	logic	for	quantifying	over	models.



1:	Predicates	over	models,	in	a	logic

[Conversations	with	Husson &	Krivine,	2015-2016]

First,	choose	a	modeling	language:	Kappa.
Second,	devise	a	logic	for	quantifying	over	models.
Datatypes:
• Graphs represent	the	state	of	a	Kappa	system
• Rules are	sets	of	<graph,	action>	pairs
• action	rewrites	graph,	creates	new	graph

• Models	are	sets	of	rules



1:	Predicates	over	models,	in	a	logic

[Conversations	with	Husson &	Krivine,	2015-2016]

First,	choose	a	modeling	language:	Kappa.
Second,	devise	a	logic	for	quantifying	over	models.
Datatypes:
• Graphs represent	the	state	of	a	Kappa	system
• Rules are	sets	of	<graph,	action>	pairs
• action	rewrites	graph,	creates	new	graph

• Models	are	sets	of	rules
Predicates:
• Atomic	predicates	specify	a	set	of	rules
• Predicates specify	a	set	of	models



Atomic	predicates
class AtomicPredicate:

Top
Bottom
Equal
PreLabeled, PostLabeled
PreUnlabeled, PostUnlabeled
PreParent, PostParent
PreLink, PostLink
PreHas, PostHas
Add, Rem
DoLink, DoUnlink
DoParent, DoUnparent
Named



Atomic	predicates
class AtomicPredicate:

Top
Bottom
Equal
PreLabeled, PostLabeled
PreUnlabeled, PostUnlabeled
PreParent, PostParent
PreLink, PostLink
PreHas, PostHas
Add, Rem
DoLink, DoUnlink
DoParent, DoUnparent
Named

Predicates
class Predicate:

And
Not
Or
Implies
ModelHasRule
ForAllRules
Top
Bottom



Example	predicate	syntax	tree

a = Agent(‘a’)
b = Agent(‘b’) 
p = And(

ModelHasRule(lambda r:
PregraphHas(r, a.bound(b))),

ModelHasRule(lambda r:
PostgraphHas(r, a.unbound(b))))



1:	Predicates	
over	models

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models

3:	Create	
predicates

2:	Implement	
interpretation



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Demo	at	http://rise4fun.com/z3



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Demo	at	http://rise4fun.com/z3
• High-performance	satisfiability	solver



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Demo	at	http://rise4fun.com/z3
• High-performance	satisfiability	solver
• Wide	variety	of	datatypes	supported:	arithmetic,	fixed-size	bit-vectors,	
extensional	arrays,	datatypes,	uninterpreted functions,	and	quantifiers



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Demo	at	http://rise4fun.com/z3
• High-performance	satisfiability	solver
• Wide	variety	of	datatypes	supported:	arithmetic,	fixed-size	bit-vectors,	
extensional	arrays,	datatypes,	uninterpreted functions,	and	quantifiers



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Demo	at	http://rise4fun.com/z3
• High-performance	satisfiability	solver
• Wide	variety	of	datatypes	supported:	arithmetic,	fixed-size	bit-vectors,	
extensional	arrays,	datatypes,	uninterpreted functions,	and	quantifiers



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Demo	at	http://rise4fun.com/z3
• High-performance	satisfiability	solver
• Wide	variety	of	datatypes	supported:	arithmetic,	fixed-size	bit-vectors,	
extensional	arrays,	datatypes,	uninterpreted functions,	and	quantifiers



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Demo	at	http://rise4fun.com/z3
• High-performance	satisfiability	solver
• Wide	variety	of	datatypes	supported:	arithmetic,	fixed-size	bit-vectors,	
extensional	arrays,	datatypes,	uninterpreted functions,	and	quantifiers



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Using	Z3	to	interpret	our	predicates
• Declare	Z3	datatypes	to	represent	
• Recursively	build Z3	predicates	from	our	predicate	classes
• Use	(check-sat) and	(get-model)



2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Using	Z3	to	interpret	our	predicates
• Value	added:
• Extract	models
• Detect	inconsistencies	(if	P	is	our	facts	so	far	and	Q	is	a	new	predicate,	and	P/\Q	
is	unsatisfiable,	then	Q	is	inconsistent	with	the	existing	facts)
• Detect	redundancy (if	Q	is	a	new	fact,	and	P	=>	Q,	then	Q	is	redundant)
• Detect	ambiguity (if	model	M	satisfies	predicate	P,	and	P/\¬(model=M)	is	
satisfiable,	then	P	has	multiple	solutions)



>>> from syndra.engine import macros, predicate
Usage	example:	Inconsistency	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK")

Usage	example:	Inconsistency	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

Usage	example:	Inconsistency	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)
>>> x_and_y = predicate.And(x, y)

Usage	example:	Inconsistency	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)
>>> x_and_y = predicate.And(x, y)
>>> print x_and_y.check_sat()

Usage	example:	Inconsistency	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)
>>> x_and_y = predicate.And(x, y)
>>> print x_and_y.check_sat()
False

Usage	example:	Inconsistency	checking



>>> from syndra.engine import macros, predicate
Usage	example:	Redundancy	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK") 

Usage	example:	Redundancy	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK") 
>>> y = macros.phosphorylated_is_active("ERK") 

Usage	example:	Redundancy	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK") 
>>> y = macros.phosphorylated_is_active("ERK") 
>>> z = macros.directly_activates("MEK", "ERK") 

Usage	example:	Redundancy	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK") 
>>> y = macros.phosphorylated_is_active("ERK") 
>>> z = macros.directly_activates("MEK", "ERK") 
>>> x_and_y_imply_z = 

predicate.Implies(predicate.And(x, y), z) 

Usage	example:	Redundancy	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK") 
>>> y = macros.phosphorylated_is_active("ERK") 
>>> z = macros.directly_activates("MEK", "ERK") 
>>> x_and_y_imply_z = 

predicate.Implies(predicate.And(x, y), z) 
>>> print x_and_y_imply_z.check_sat() 

Usage	example:	Redundancy	checking



>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK") 
>>> y = macros.phosphorylated_is_active("ERK") 
>>> z = macros.directly_activates("MEK", "ERK") 
>>> x_and_y_imply_z = 

predicate.Implies(predicate.And(x, y), z) 
>>> print x_and_y_imply_z.check_sat() 
True

Usage	example:	Redundancy	checking



1:	Predicates	
over	models

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models

2:	Implement	
interpretation

3:	Create	
predicates



3:	Tools	for	creating	predicates

• Macros



3:	Tools	for	creating	predicates

• Macros

PreLabeled(A, phosphorylated) ∧
PreUnbound(A, B) ∧
PostLabeled(A, phosphorylated) ∧
PostBound(A, B)

A
phosphorylates

B



3:	Tools	for	creating	predicates

• Macros

PreLabeled(A, phosphorylated) ∧
PreUnbound(A, B) ∧
PostLabeled(A, phosphorylated) ∧
PostBound(A, B)

A
phosphorylates

B

• directly_phosphorylates
• phosphorylated_is_active
• directly_activates
• negative_residue_behaves_as_if_phosphorylated



3:	Tools	for	creating	predicates

• Macros
• Interface	with	INDRA

[INDRA:	Gyori et	al.	From	word	models	to	executable	models	of	signaling	networks	using	automated	assembly.	2017]



3:	Tools	for	creating	predicates

• Macros
• Interface	with	INDRA
• indra.statements.Phosphorylation
• indra.statements.Activation
• indra.statements.ActiveForm

[INDRA:	Gyori et	al.	From	word	models	to	executable	models	of	signaling	networks	using	automated	assembly.	2017]



1:	Predicates	
over	models

Mechanistic	rules
Non-mechanistic	rules

Domain	knowledge
Space	of	possible	
models

2:	Implement	
interpretation

3:	Create	
predicates



NLP



NLP
Syndra



NLP

https://github.com/csvoss/syndra

Syndra


