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1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language:	Kappa.

[Figure	due	to	Danos et	al.	2009:	Abstracting	the	ODE	Semantics
of	Rule-Based	Models:	Exact	and	Automatic	Model	Reduction.]

Why	Kappa?

Well-defined	operational	semantics
allow	us	to	reason	precisely.



1:	Predicates	over	models,	in	a	logic

First,	choose	a	modeling	language:	Kappa.
Second,	devise	a	logic	for	quantifying	over	models.



1:	Predicates	over	models,	in	a	logic

[Conversations	with	Husson &	Krivine,	2015-2016]

First,	choose	a	modeling	language:	Kappa.
Second,	devise	a	logic	for	quantifying	over	models.
Datatypes:
• Graphs represent	the	state	of	a	Kappa	system
• Rules are	sets	of	<graph,	action>	pairs
• action	rewrites	graph,	creates	new	graph

• Models	are	sets	of	rules



1:	Predicates	over	models,	in	a	logic

[Conversations	with	Husson &	Krivine,	2015-2016]

First,	choose	a	modeling	language:	Kappa.
Second,	devise	a	logic	for	quantifying	over	models.
Datatypes:
• Graphs represent	the	state	of	a	Kappa	system
• Rules are	sets	of	<graph,	action>	pairs
• action	rewrites	graph,	creates	new	graph

• Models	are	sets	of	rules
Predicates:
• Atomic	predicates	specify	a	set	of	rules
• Predicates specify	a	set	of	models
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class AtomicPredicate:
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Bottom
Equal
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Named



Atomic	predicates
class AtomicPredicate:

Top
Bottom
Equal
PreLabeled, PostLabeled
PreUnlabeled, PostUnlabeled
PreParent, PostParent
PreLink, PostLink
PreHas, PostHas
Add, Rem
DoLink, DoUnlink
DoParent, DoUnparent
Named

Predicates
class Predicate:

And
Not
Or
Implies
ModelHasRule
ForAllRules
Top
Bottom



Example	predicate	syntax	tree

a = Agent(‘a’)
b = Agent(‘b’) 
p = And(

ModelHasRule(lambda r:
PregraphHas(r, a.bound(b))),

ModelHasRule(lambda r:
PostgraphHas(r, a.unbound(b))))
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2:	Implement	interpretation	of	predicates
• Solving	predicates	in	this	logic	is	reducible	to	first-order	logic
•Workhorse:	Z3	Theorem	Prover
• Using	Z3	to	interpret	our	predicates
• Value	added:
• Extract	models
• Detect	inconsistencies	(if	P	is	our	facts	so	far	and	Q	is	a	new	predicate,	and	P/\Q	
is	unsatisfiable,	then	Q	is	inconsistent	with	the	existing	facts)
• Detect	redundancy (if	Q	is	a	new	fact,	and	P	=>	Q,	then	Q	is	redundant)
• Detect	ambiguity (if	model	M	satisfies	predicate	P,	and	P/\¬(model=M)	is	
satisfiable,	then	P	has	multiple	solutions)
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>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)
>>> x_and_y = predicate.And(x, y)
>>> print x_and_y.check_sat()
False

Usage	example:	Inconsistency	checking
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>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK") 
>>> y = macros.phosphorylated_is_active("ERK") 
>>> z = macros.directly_activates("MEK", "ERK") 
>>> x_and_y_imply_z = 

predicate.Implies(predicate.And(x, y), z) 
>>> print x_and_y_imply_z.check_sat() 
True

Usage	example:	Redundancy	checking
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3:	Tools	for	creating	predicates

• Macros

PreLabeled(A, phosphorylated) ∧
PreUnbound(A, B) ∧
PostLabeled(A, phosphorylated) ∧
PostBound(A, B)

A
phosphorylates

B

• directly_phosphorylates
• phosphorylated_is_active
• directly_activates
• negative_residue_behaves_as_if_phosphorylated
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3:	Tools	for	creating	predicates

• Macros
• Interface	with	INDRA
• indra.statements.Phosphorylation
• indra.statements.Activation
• indra.statements.ActiveForm

[INDRA:	Gyori et	al.	From	word	models	to	executable	models	of	signaling	networks	using	automated	assembly.	2017]
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https://github.com/csvoss/syndra

Syndra


